モディバー® F、FSシリーズ

総合カタログ

バイオから宇宙まで

モディパー®F、FS シリーズについて

モディパー® F、FS シリーズ は、当社が長年蓄積してきたブロックポリマー製造技術を駆使して開発した「フッ素系」 若しくは、「シリコーン系」の高分子タイプの添加剤であり、以下の特長があります。

- モディパー® F、FS シリーズ はアクリル系塗料や合成樹脂に少量添加(1~3%) することで、撥水・撥油性、防汚性、耐摩耗性の向上などの表面改質や、粘着剤の粘着性を調整することが可能です。
- モディパー® F、FS シリーズ はさまざまな有機溶剤に溶解可能であり、アクリル系樹脂などの合成樹脂に配合可能です。
- モディパー® Fシリーズ はポリテトラフルオロエチレン(PTFE)などフッ素系化合物に対する分散性を向上させることが可能です。
- モディパー® F シリーズ はパーフルオロオクタン酸(PFOA)を一切含んでいない材料です。
- モディパー® FS シリーズ は高分子タイプの添加剤ですので、樹脂、塗料の熱的性質に影響を与えません。

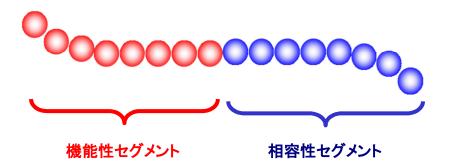


図 1 モディパー® F、FS シリーズの構造

表 1 モディパー® F、FS シリーズについて

製品名	機能性セグメント	相容性 セグメント	固形分濃度 (wt.%)	溶剤	外観	特長
モディパー® F206			30	MEK/MIBK	青白色透明液体	標準グレード
モディパー® F606			100	-	白色粉体	F206 の粉体品
モディパー® F246	フッ素系 コポリマー	アクリル系 コポリマー	30	MEK/MIBK	青白色透明液体	防汚性付与
モディパー® F3636			30	パラフィン系溶剤	無色透明液体	高撥水性付与
モディパー® F226			20	IPA/水	白色液体	環境対応
モディパー® FS710-1			15	MEK/トルエン	無色透明液体	標準グレード
モディパー® FS700			100	-	白色粉体	FS710−1 の 粉体品
モディパー® FS720	シリコーン系 アクリル系 コポリマー コポリマー	15	MEK	無色透明液体	高撥水性付与	
モディパー® FS730			30	MEK	無色透明液体	耐擦傷性付与
モディパー® FS770			15	IPA/水	白色液体	環境対応

MEK :メチルエチルケトン
MIBK :メチルイソブチルケトン
IPA :イソプロピルアルコール

モディパー® F606

モディパー® F206

モディパー® FS710−1

モディパー® FS770

図2 モディパー® F、FS シリーズの外観

	評価項目		試験方法	単位	F206	F606	F246	F3636	F226
粘度		JIS K 7117 (1987)	Р	0.3	-	0.3	0.1	0.7	
	水酸基価		JIS K 0070 (1992)	mgKOH/g	55	55	2	0	30
静的	水			度(°)	110	110	110	110	115
接触角1)	n- ^ -	キサデカン		度(°)	75	75	75	50	95
	水	前進接触角	JIS R 3257	度(°)	120	120	120	125	110
動的	小	後退接触角	(1999)	度(°)	65	65	65	90	20
接触角1)	<i>ァ</i> ーヘキサデカン	前進接触角		度(°)	70	70	70	80	80
	後退接触角			度(°)	33	33	33	20	15
熱的性質	TGA ²⁾	1% 重量減少温度	JIS K 7120	°C	170	170	170	235	165
然的儿子良	I GA	5% 重量減少温度	(1987)	C	250	250	250	300	260

表 2 モディパー® Fシリーズの基本性質

1)基材:ガラス、固形分濃度:10wt.%、乾燥条件:23°C×24h

2)熱重量測定(昇温速度:10°C/min、窒素雰囲気下)

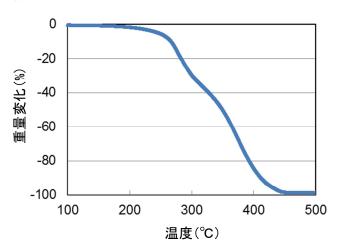


図 3 モディパー® F606 の TGA 曲線

動的接触角について

動的接触角測定では、前進接触角(θ_a)と後退接触角(θ_r)を測定します。 θ_a は静的接触角に近い測定であり、 θ_r は表面が水で濡れた状態の接触角測定です。図 A のように、 θ_a が高くても θ_r が低い場合は撥水性(撥油性)を示すとはいえず、図 B のように θ_r が高い場合、撥水性を示すといえます。

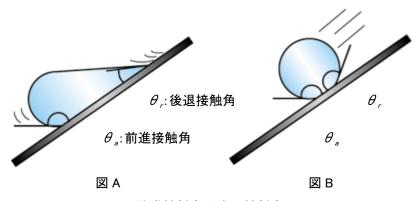


図4 前進接触角と後退接触角について

表 3 モディパー® FS シリーズの基本性質

評価項目		試験方法	単位	FS710-1	FS700	FS720	FS730	FS770	
粘度			JIS K 7117 (1987)	Р	0.1	-	0.1	0.1	0.5
	水酸基価		JIS K 0070 (1992)	mgKOH/g	60	60	0	0	195
静的	静的水		JIS R 3257	度(°)	105	105	105	95	75
接触角1)	接触角 1)		(1999)	度(°)	20	10	20	25	25
熱的性質	TGA ²⁾	1% 重量減少温度 5% 重量減少温度	JIS K 7120 (1987)	လ	170 190	170 190	200 240	170 210	120 230

1)基材:ガラス、固形分濃度:FS700→20wt.%、FS710-1, FS720, FS730→30wt.%、FS770→10wt.%、乾燥条件:23°C×24h

2)TGA:熱重量測定(昇温速度:10°C/min、窒素雰囲気下)

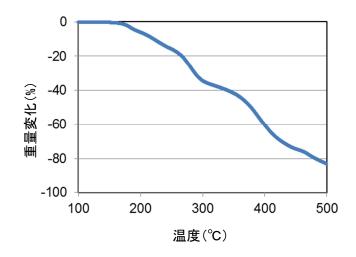


図 5 モディパー® FS700 の TGA 曲線

表 4 モディパー® F、FS シリーズの各種溶剤に対する溶解性

溶剤	F206 F606	F246	F3636	F226	FS710-1	FS700	FS720	FS730	FS770
アセトン	0	0	×	0	0	0	0	0	Δ
メチルエチルケトン	0	0	×	0	0	0	0	0	×
メチルイソブチルケトン	0	0	0	0	0	0	0	0	×
酢酸エチル	0	0	×	0	0	0	0	0	×
酢酸ブチル	0	0	0	0	0	0	0	0	×
テトラヒドロフラン	0	0	0	0	0	0	0	0	Δ
メチルアルコール	×	×	×	×	×	×	×	×	Δ
エチルアルコール	Δ	Δ	×	Δ	0	Δ	Δ	×	0
n-ブチルアルコール	×	0	×	Δ	0	×	0	Δ	×
エチレングリコール モノメチルエーテル	0	0	×	0	0	0	0	0	0
エチレングリコール モノエチルエーテル	0	0	×	0	0	0	0	0	0
n-ヘキサン	×	×	0	×	Δ	×	Δ	Δ	×
トルエン	×	Δ	0	Δ	0	0	0	0	×
キシレン	×	Δ	0	Δ	0	×	0	0	×
ジメチルホルムアミド	0	0	×	0	0	0	0	0	0
クロロホルム	0	0	0	Δ	0	0	0	0	×

溶剤への溶解性は各製品を有効成分量 1wt.%に希釈して判定

O:溶解、△:分散状態、×:非溶解

表 5 モディパー® F、FS シリーズの各種反応性溶剤に対する溶解性

反応性溶剤	F606	FS700
2-ヒドロキシエチルアクリレート	0	Δ
テトラヒドロフルフリルアクリレート	0	Δ
4-ビニルピリジン	0	Δ
2-エチルヘキシルアクリレート	×	×
2-ヒドロキシエチルメタクリレート	0	Δ
ヒドロキシプロピルメタクリレート	0	-
グリシジルメタクリレート	0	Δ
ネオペンチルグリコールジアクリレート	0	Δ
ヘキサンジオールジアクリレート	0	Δ
トリメチロールプロパントリアクリレート	0	-

反応性溶剤への溶解性は各製品を固形分 20wt.%に希釈して判定

○:溶解、△:分散状態、×:非溶解、一:未測定

4 モディパー®Fシリーズの用途例

■繊維への撥水・撥油性付与

下記試験片作製条件を用いてモディパー*F3636 で処理した場合の撥水・撥油性試験結果を表 8 に示します。モディパー*F3636 を使用することでポリエステル繊維の撥水・撥油性を向上させることが可能です。

<試験片作製条件>

・溶剤 : メチルエチルケトン

・塗装方法 : ディッピング

加工布 : ポリエステル繊維

·乾燥条件 : 23°C×24h

•添加量: 溶剤に対して 1wt.%添加

<試験方法>

·撥水性試験 : JIS L 1092(2009)

·撥油性試験 : AATCC

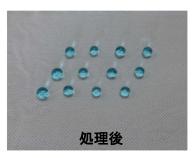


図 6 ポリエステル繊維の撥水性変化

表 6 撥水性試験の評価基準

撥水性(点)	評価基準		
100	表面に湿潤や水滴付着がない		
50	表面全体が湿潤を示す		
0	表面及び裏面全体が湿潤を示す		

表 7 撥油性試験の評価基準

撥油性(点)	評価基準
8	r-ヘプタンが浸透しない
5	n-ドデカンが浸透しない
1	Nujol が浸透しない
0	Nujol が浸透する

Nujol:流動パラフィン

表 8 モディパー® F3636 の撥水・撥油性評価結果

添加量(wt. %)	撥水性(点)	撥油性(点)
0	0	0
1	100	5

■コーティングへの撥水・撥油性付与

下記試験片作製条件を用いてモディパー® F206 を添加したアクリル塗膜の撥水・撥油性評価結果を表 9、図 7 に示します。モディパー® F206 を使用することでコーティングの撥水・撥油性を向上させることが可能です。

〇試験片作製条件

<コーティング塗膜組成>

・主剤(アクリルウレタン系) : 100 重量部・硬化剤(イソシアネート系) : 10 重量部

・添加剤(モディパー® F206): 2 重量部(有効成分換算)

<塗装条件>

・基材 : SUS304・塗装方法 : バーコーター・硬化条件 : 80°C/30min

<試験方法>

・規格: JIS R 3257(1999)に基づく静的接触角測定

•測定機器 : 自動接触角計 DropMaster500(協和界面科学製)

・測定方法 : 液体を滴下後、30sec 後に測定・試験液 : 水、オレイン酸、//ーへキサデカン

表 9 撥水・撥油性評価結果

試験片	単位	水	オレイン酸	<i>n</i> ーヘキサデカン
ブランク	度(°)	90	30	30
F206	度(°)	110	75	70

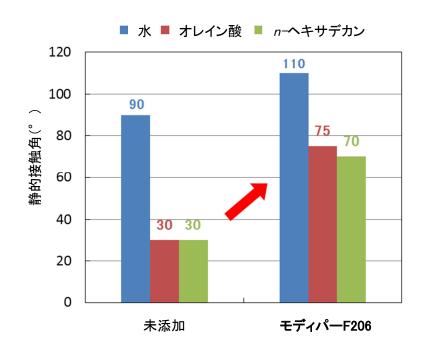


図 7 静的接触角測定結果

■不飽和ポリエステル樹脂への防汚性付与

下記条件にて不飽和ポリエステル樹脂にモディパー® F246を添加した際の試験片作製条件を表 10 に、防汚性評価結果を図 9 に、撥水・撥油性評価結果を図 10 に示します。モディパー® F246を樹脂 100 部に対して 2 部添加することで、水およびオレイン酸の接触角が向上することから、撥水・撥油性の付与が可能となります。これにより、汚れが落ちやすくなり防汚性が付与されます。

〇試験片作製条件

<原料配合組成>

表 10 原料配合組成

材料	化合物	重量部
樹脂	不飽和ポリエステル	70
低収縮剤	ポリスチレン 1)	30
充填剤	炭酸カルシウム	160
離型剤	ジンクステアレート	4
増粘剤	酸化マグネシウム	2
硬化剤	パーヘキシル®A ²⁾	1.4
遅延剤	ベンゾキノン ³⁾	1
防汚剤 4)	モディパー® F246	2
補強剤	ガラス繊維	28

- 1)30wt.%スチレン希釈溶液
- 2) 当社製「t-ヘキシルパーオキシアセテート」
- 3)5wt.%ジエチレングリコール希釈溶液
- 4)有効成分換算で添加

く養生条件>

•条件 : 40°C×24h

<成型条件>

・機器: 圧縮成型機

·金型温度 : 上型/下型=140℃/130℃

・圧力 : 10MPa・硬化時間 : 5min

<撥水,撥油性評価>

・規格: JIS R 3257(1999)に基づく静的接触角測定

•測定機器 : 自動接触角計 DropMaster500(協和界面科学製)

•測定方法 : 液体を滴下後、30sec 後に測定

試験液 : 水、オレイン酸

<防汚性評価>

図 8 に示すように、色素を含んだ水溶液により簡易的に水垢汚れを発生させ、これをスポンジでふき取った際の汚れの残存率から防汚性を評価。

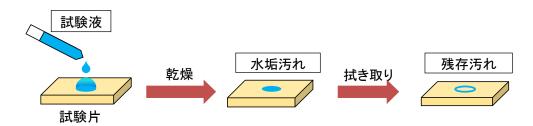
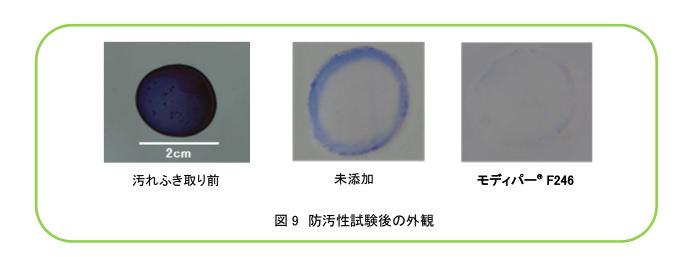
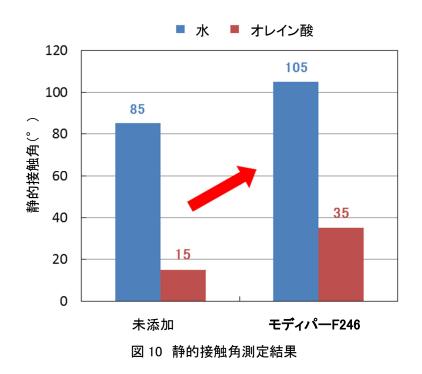




図 8 防汚性試験方法

■耐熱水試験

表 10 の配合組成で得られた試験片の耐熱水試験を行った結果を図 11、12 に示します。時間が経過するにつれて、不飽和ポリエステルの加水分解による劣化の影響により撥水・撥油性が低下しますが、未添加の試験片と比較して、モディパー® F246 を添加することで高い撥水・撥油性、防汚性を維持することが可能です。

<試験条件>

試験片を 90°Cの熱水に浸漬し、各経過時間(200h、350h、500h)に、取り出した試験片の接触角測定、防汚性評価 試験を実施

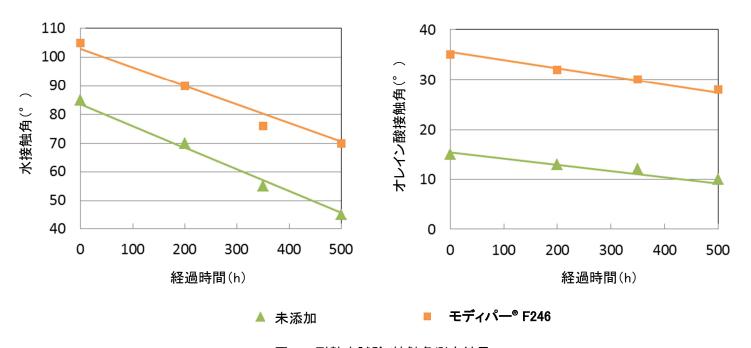
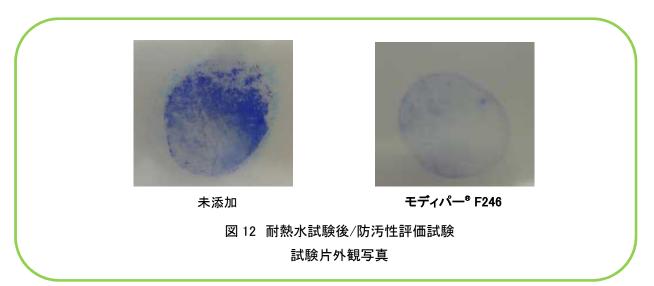
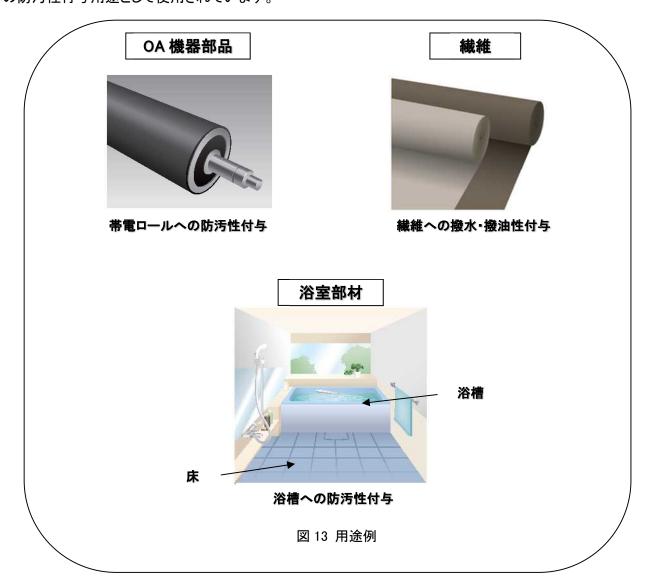




図 11 耐熱水試験/接触角測定結果

■用途例のまとめ

モディパー® F シリーズは塗料、コーティング剤への防汚性付与、繊維への撥水・撥油性付与や、浴槽などの浴室部材への防汚性付与用途として使用されています。

5 モディパー® FS シリーズの用途例

■剥離性の付与

アクリルポリオールにモディパー® FS700 を添加し、下記条件にて剥離紙に硬化膜を作製し、180° 剥離試験を行った結果を図 14 に示します。モディパー® FS700 を添加することで剥離力を調整することが可能です。またモディパー® FS700 のアクリルセグメントがアンカーとなるため、シリコーンオイルに比べ転写汚染を発生せず、繰り返し使用しても剥離力を維持することが可能です(図 15)。

〇硬化膜作製方法

基材(剥離紙) : ポリエチレンテレフタレート(PET)フィルム

・バインダー : アクリルポリオール

・硬化方法 : 熱硬化・膜厚 : 7μm

・添加 : アクリルポリオールに対してそれぞれ 1、3、5wt.%添加

〇試験方法

規格 : JIS Z 0237(2009)に基づく180°剥離試験

•引き上げ速度 : 200mm/min

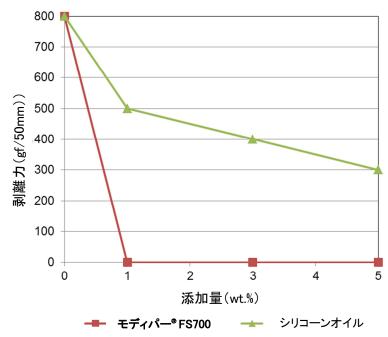


図 14 剥離試験時の剥離力変化

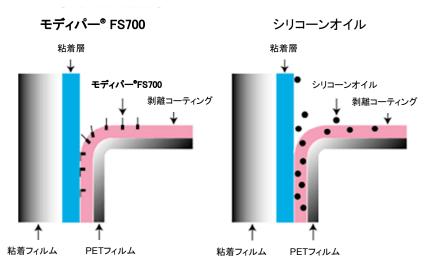


図 15 アクリル系塗料にモディパー® FS700 を添加した場合のメカニズム

6 荷姿

■ 荷姿:

モディパー® F606
 ・モディパー® F206、246
 ・モディパー® F3636
 ・12kg ハイブリット缶

•モディパー® F226 :10kg 段ボール箱(5kg ポリエチレン容器×2本)

・モディパー® FS700 : 5kg 段ボール箱 ・モディパー® FS710−1、720、730 : 15kg ハイブリット缶

・モディパー® FS770 :10kg 段ボール箱(5kg ポリエチレン容器×2本)

7 使用上の注意事項

• モディパー® F606、FS700 は、粉体状であり、粉塵爆発の可能性がありますのでご注意ください。また、床にこぼした場合は非常に滑りやすくなりますので、直ちに回収除去して下さい。

- 本製品の使用にあたっては、用途に対応する法規制、および用途への適合性・安全性等を試験・確認下さい。
- その他の一般的な事柄につきましては、安全データシート(SDS)をご参照下さい。

■記載内容の取り扱い

記載内容は現時点で入手できた資料、情報、データに基づいて作成していますが、記載のデータや評価、危険性等に関しては、いかなる保証もなすものではありません。また、記載事項は通常の取り扱いを対象としたものですので、特別な取り扱いをする場合には用途、用法に適した安全対策を実施の上、お取り扱い願います。

※「モディパー\MODIPER」「パーヘキシル\PERHEXYL」は日油株式会社の登録商標です。

化成事業部

ファインポリマー営業部 ファインポリマーグループ 〒150-6019

東京都渋谷区恵比寿 4-20-3 恵比寿ガーデンプレイスタワー

TEL:03-5424-6838 FAX:03-5424-6814

E-mail:modiper@nof.co.jp URL:http://www.nof.co.jp